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Abstract
We construct the self-complementary (SC) neutrino mixing pattern from the SC relation plus δCP = −π

2
and show that the indicated effective neutrino mass matrix has to be constructed perturbatively. We build
an S4 model for neutrino masses and mixings based on the SC neutrino mixing pattern. After performing
a numerical study on the model’s parameter space, we find that the model is phenomenologically viable
in the case of normal ordering, and it gives predictions for the not-yet observed quantities like the lightest
neutrino mass m1 ∈ [0.003, 0.010] eV and the Dirac CP violating phase δCP ∈ [256.72◦, 283.33◦], which can
be tested in the future experiments.
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1. INTRODUCTION
Among the various attempts to understand the known fact that neutrinos are massive and have mixing, discrete flavour symmetries
advantage in having a vivid physical picture and offering predictions in mixing and/or masses (see e.g. [1, 2] for reviews). In the
meantime, phenomenological observations can give us hints of underlying structure, as they did for inspiring the discrete flavour
symmetry in the beginning.

In this work, we build a neutrino mixing model based on a not-so-much investigated phenomenological relation: the self-
complementarity relation (SC) of lepton mixing [3, 4], which is

θ12 + θ13 = θ23 = 45◦, (1)

where θij are lepton mixing angles in the standard parametrization. It is observed in 2012 in light of the relatively large value of θ13
measured by reactor neutrino experiments and it correlates the three lepton mixing angles in a simple way.

This proceeding is based on work [5]. Here we briefly describe the model building procedure and then present the main results.

2. PREPARATION
To construct a mixing model from bottom-up, we need a mixing pattern featuring the self-complementary mixing first. Besides the
relation θ12 + θ13 = θ23 = 45◦, we also adopt a maximal CP-violating phase: δCP = −π

2 . We use it for two reasons: firstly, it is the
value of δCP which is indicated by T2K [6] and NOνA [7], and is within the 1σ range of the global fit [8]; secondly, it is special in the
sense that δCP contributes its maximal to the Jarlskog invariant. Applying the SC relation together with δCP = −π

2 to the standard
parameterization, we get the self-complementary mixing directly as
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 , (2)

and the whole lepton mixing matrix is UPMNS = USC.P, P = Diag{e−iα1/2, e−iα2/2, 1} when neutrinos are Majorana particles.
We can see that the SC mixing satisfies |USC|¯i = |USC|τi, which is the µ-τ exchange symmetry prediction for the mixing [9].

A mass matrix given by Eq. (2), which is at the meantime simple enough for model building, only reflects the two input: θ23 =
45◦, δCP = −π

2 . That is to say, the other ingredient of SC mixing, i.e., θ12 + θ13 = 45◦ is obscured from the direct construction of a
mass matrix. This ingredient gives substructure of a mass matrix that is given by θ23 = 45◦, δCP = −π

2 . To see this substructure,
we have to construct the mass matrix perturbatively.
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By identifying sin θ13 = λ, cos θ13 ∼= 1− 1
2 λ2, we get the expansion of USC in powers of λ,

USC ≡ Uλ0 + λUλ1 + λ2Uλ2 + ...
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We use the expansion of USC to get the Majorana mass matrix expanded in λ,

m̂ν = U∗SCm̂dU†
SC = (Uλ0 + λUλ1 + λ2Uλ2 + ...)∗m̂d(Uλ0 + λUλ1 + λ2Uλ2 + ...)† ≡ m̂0 + λm̂1 + λ2m̂2 + ..., (4)

where m̂d = diag{m1, m2, m3}. We use a hat notation above m to distinguish matrix m̂i from eigenvalues mi. Using the Uλi in Eq. (3),
the mass matrix can be constructed accordingly. Since λ = sin θ13 ' 0.15, we will stop at O(λ2), so the deviation from the exact SC
mixing at percent level is expected. In next section, we will build a model to reproduce the neutrino mass matrix structure to this
order.

3. THE MODEL
We list the field representations in S4 and charges under additional symmetries in our model in the following table. Higgs is the
singlet in S4 and is not charged under any of the additional symmetries, so it is omitted in the table. The U(1) charges are arranged
in a way that no new terms at the discussed order will show up, explicitly, x 6= m 6= n 6= z.

L eR µR τR N φe φµ φτ θ ξ1 φ1 ψ1 φ21 φ22 φ23 φ31 φ32 ψ3 ξ3
S4 3 1 1 1 3 3 3 3 1 1 3 2 3 3 3 3 3 2 1
U(1) -x z m n x 1

2 (x− z) x-m x-n 0 -2x -2x -2x -x -x -x − 2
3 x − 2

3 x y -2x-2y
U(1)FN 0 2 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0
Z2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Z2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Z2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Z3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0

The effective Lagrangian reads
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where the couplings yij in the Majorana neutrino mass term are of mass dimension 1 and are at the scale of heavy neutrino mass
(we use a notation “y” instead of “m” to avoid confusion with various m in this model); the Λ denotes the cutoff scale of the theory.

The model constructed in this way that the structure of the neutrino mass matrix comes solely from S4 breaking flavon vevs,
which is derived from minimization of the scalar potential as is shown in Appendix of [5]. The Zn symmetries are needed to
distinguish the copies of flavons in the same S4 representation, e.g., forbiding terms like NNφ21φ22. The U(1) symmetry forbid
terms like L̄H̃eRφµθ2. The U(1)FN symmetry is responsible for the hierarchical masses of charged leptons. The potential Goldstone
boson coming from the spontaneous breaking of U(1) symmetry may be gauged away by adding more particles, which is beyond
the scope of the current work. It is also possible to use more cyclic symmetries instead of the U(1) symmetry to complete the same
construction.

After the flavons in the charged lepton sector acquire vevs, we get a diagonal charged lepton mass matrix. Since the right
handed charged leptons are all singlets of S4, the resulting charged lepton mass matrix will always be diagonal (even when higher
order operators enter). It gives no corrections to neutrino mixing and hence we omit it hereafter.

When the flavons in the neutrino sector acquire vevs, we get the following mass matrix for the heavy neutrinos
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m̂NLO =
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FIGURE 1: Numerical parameter space scan result. Blue points given by the model are in agreement with 3σ ranges of the low
energy neutrino masses and mixing parameters. Left: The colored bands mark the 1σ ranges for θ13 and δ, the plot is framed in
their 3σ ranges taken from Ref. [8]. Right: Prediction for the effective Majorana neutrino mass |〈mee〉| in neutrinoless double beta
decay experiments as a function of the lightest neutrino mass mmin. The light blue (pink) region are obtained from the 3σ ranges
of the low energy neutrino masses and mixings in case of normal (inverted) ordering. The vertical black dashed line is the Planck
limit [11], and the vertical red dot-dashed line represents the limit on mmin (∼ 0.2 eV) obtained from KATRIN sensitivity [12]. The
light grey region is the upper limit on |〈mee〉| given by the EXO-200 [13], KamLAND-Zen [14], and GERDA experiments [15].
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Due to the strict constraints given by all the symmetries of the model, we find no higher order terms contributing to the
Majorana neutrino mass matrix to mass dimension 10.

The effective light neutrino mass matrix is given by seesaw as

m̂νmodel = m̂D(m̂LO + m̂NLO + m̂NNLO + ...)−1m̂T
D ≡ m̂Dm̂−1

R m̂T
D, (9)

where we define m̂R = m̂LO + m̂NLO + m̂NNLO + ... as the heavy neutrino mass matrix. It is expected from the above construction
that m̂R resembles the same structure inspired from the SC mixing to the order λ2.

4. RESULTS AND CONCLUSION
The parameters in m̂R can be further simplified. In the end we arrive at five independent real parameters in m̂R: ṽξ1 , ṽψ1 and their
phase γ; ṽφ1 and its phase ρ. We perform a numerical scan of the parameter space. The seesaw scale is fixed to 1013 GeV and yν is
taken to be 0.1. We use the REAP package [10] to perform the evolution of the mixing parameters from the seesaw scale to the low
energy scale to make comparison with the oscillation observables.

In Figure 1 we show the result of the numerical parameter space scan for neutrino masses in the normal ordering. We can see
that there are points given by the model in agreement with 3σ ranges of the low energy neutrino masses and mixing parameters.
Given the fact that m̂νmodel cannot be of exactly the SC form, we see that the effects of m̂D together with the RG running, and more
importantly, the elaborately constructed m̂R, render a phenomenologically viable m̂νmodel in the low energy. It requires more work
to disentangle these effects. We can get a sense of the RG effect by inputting the best fit values of the model parameters to the
observables, and then performing a RG running down to the low energy. We find that, e.g. θ12 diminishes at a level of O(10−6)
radian, θ13 and θ23 diminishes at a level ofO(10−5) radian. This means a mild destructive effect. As we know what m̂R would give,
we conclude that the m̂D effect is also mild and compensates the RG effect, at least in the case of these input.

In the inverted ordering case we find no viable points. After fitting the models’ predictions on {θ12, θ13, θ23, δCP, ∆m2
21, ∆m2

32}
to their global fit values, we get a χ2

min/NDF ' 12/1 in the inverted ordering case, indicating that the model is not a suitable
description of the data in this case.

The model also gives predictions on the not-yet observed quantities. For example, the Dirac CP violating phase is predicted
to be in the range [256.72◦, 283.33◦], and the Majorana phases are: α1 ∈ [128.03◦, 233.58◦], α2 ∈ [0.30◦, 130.21◦] ∪ [230.59◦, 359.43◦].
The lightest neutrino mass is m1 ∈ [0.003, 0.010] eV. The effective Majorana neutrino mass in neutrinoless double beta decay is
|〈mee〉| ∈ [0.00001, 0.010] eV.

To sum up, the S4 model we built are elaborately controlled at a percent level of accuracy to render the mass matrix structure
dictated by the SC mixing. Also as a result of the control, there are few free parameters left in the model. A numerical study of
the parameter space shows that the model gives realistic predictions on neutrino masses and mixings, and can be tested in future
experiments.

3



Andromeda Proceedings NDM 2020, Hurghada, Egypt

ACKNOWLEDGEMENTS
The author would like to thank the organisers of NDM2020 for the opportunity to present this work. This work is supported in
part by the Shanghai Laboratory for Particle Physics and Cosmology under Grant No. 11DZ2260700.

References
[1] S. F. King, J. Phys. G 42 (2015) 12, 123001 [arXiv:1510.02091 [hep-ph]].
[2] S. T. Petcov, Nucl. Phys. B 892 (2015) 400 [arXiv:1405.6006 [hep-ph]].

I. Girardi, S. T. Petcov, A. J. Stuart and A. V. Titov, Nucl. Phys. B 902 (2016) 1 [arXiv:1509.02502 [hep-ph]].
[3] X. Zhang and B. Q. Ma, Phys. Lett. B 710 (2012) 630 [arXiv:1202.4258 [hep-ph]].
[4] Y. j. Zheng and B. Q. Ma, Eur. Phys. J. Plus 127 (2012) 7 [arXiv:1106.4040 [hep-ph]].
[5] X. Zhang, J. Phys. G 45 (2018) no.3, 035004 doi:10.1088/1361-6471/aaa81b [arXiv:1512.05085 [hep-ph]].
[6] K. Abe et al. [T2K Collaboration], Phys. Rev. Lett. 112 (2014) 061802 [arXiv:1311.4750 [hep-ex]].
[7] J. Bian [NOvA Collaboration], arXiv:1510.05708 [hep-ex].
[8] P. F. de Salas, D. V. Forero, C. A. Ternes, M. Tortola and J. W. F. Valle, arXiv:1708.01186 [hep-ph].
[9] X. Zhang and B. Q. Ma, Sci. China Phys. Mech. Astron. 58 (2015) 7, 1 [arXiv:1403.6969 [hep-ph]].

[10] S. Antusch, J. Kersten, M. Lindner, M. Ratz and M. A. Schmidt, JHEP 0503 (2005) 024 [hep-ph/0501272].
[11] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076 [astro-ph.CO]].
[12] G. Drexlin [KATRIN Collaboration], Nucl. Phys. Proc. Suppl. 145 (2005) 263.
[13] J. B. Albert et al. [EXO Collaboration], arXiv:1707.08707 [hep-ex].
[14] A. Gando et al. [KamLAND-Zen Collaboration], Phys. Rev. Lett. 117 (2016) no.8, 082503 Addendum: [Phys. Rev. Lett. 117 (2016) no.10, 109903]

[arXiv:1605.02889 [hep-ex]].
[15] M. Agostini et al., Nature 544, 47 (2017) [arXiv:1703.00570 [nucl-ex]].

4


